WorldCat lets you search the collections of libraries in your community and thousands more around the world for books, music CDs, and videos. If you find something you want, our Documents on Demand office can order it for you.
Python for Data Analysis: Data Wrangling with pandas, NumPy and Jupyter by Wes McKinneyGet the definitive handbook for manipulating, processing, cleaning, and crunching datasets in Python. Updated for Python 3.10 and pandas 1.4, the third edition of this hands-on guide is packed with practical case studies that show you how to solve a broad set of data analysis problems effectively. You'll learn the latest versions of pandas, NumPy, and Jupyter in the process. Written by Wes McKinney, the creator of the Python pandas project, this book is a practical, modern introduction to data science tools in Python. It's ideal for analysts new to Python and for Python programmers new to data science and scientific computing. Data files and related material are available on GitHub. Use the Jupyter notebook and IPython shell for exploratory computing Learn basic and advanced features in NumPy Get started with data analysis tools in the pandas library Use flexible tools to load, clean, transform, merge, and reshape data Create informative visualizations with matplotlib Apply the pandas groupby facility to slice, dice, and summarize datasets Analyze and manipulate regular and irregular time series data Learn how to solve real-world data analysis problems with thorough, detailed examples
Publication Date: 2022
Risk Analytics and Management in Finance and Insurance by Tze Leung Lai and Haipeng XingFollowing the recent financial crisis, risk management in financial institutions, particularly in banks, has attracted widespread attention and discussion. Novel modeling approaches and courses to educate future professionals in industry, government, and academia are of timely relevance. This book introduces an innovative concept and methodology developed by the authors: active risk management. It is suitable for graduate students in mathematical finance/financial engineering, economics, and statistics as well as for practitioners in the fields of finance and insurance. The book's website features the data sets used in the examples along with various exercises.
Statistics for Data Science and Analytics by Peter C. Bruce, Peter Gedeck, and Janet DobbinsIntroductory statistics textbook with a focus on data science topics such as prediction, correlation, and data exploration Statistics for Data Science and Analytics is a comprehensive guide to statistical analysis using Python, presenting important topics useful for data science such as prediction, correlation, and data exploration. The authors provide an introduction to statistical science and big data, as well as an overview of Python data structures and operations. A range of statistical techniques are presented with their implementation in Python, including hypothesis testing, probability, exploratory data analysis, categorical variables, surveys and sampling, A/B testing, and correlation. The text introduces binary classification, a foundational element of machine learning, validation of statistical models by applying them to holdout data, and probability and inference via the easy-to-understand method of resampling and the bootstrap instead of using a myriad of "kitchen sink" formulas. Regression is taught both as a tool for explanation and for prediction. This book is informed by the authors' experience designing and teaching both introductory statistics and machine learning at Statistics.com. Each chapter includes practical examples, explanations of the underlying concepts, and Python code snippets to help readers apply the techniques themselves. Statistics for Data Science and Analytics includes information on sample topics such as: Int, float, and string data types, numerical operations, manipulating strings, converting data types, and advanced data structures like lists, dictionaries, and sets Experiment design via randomizing, blinding, and before-after pairing, as well as proportions and percents when handling binary data Specialized Python packages like numpy, scipy, pandas, scikit-learn and statsmodels--the workhorses of data science--and how to get the most value from them Statistical versus practical significance, random number generators, functions for code reuse, and binomial and normal probability distributions Written by and for data science instructors, Statistics for Data Science and Analytics is an excellent learning resource for data science instructors prescribing a required intro stats course for their programs, as well as other students and professionals seeking to transition to the data science field.